本文目录一览:
伺服电机用膜片联轴器与梅花弹性联轴器主要功能有何区别?
一般情况下,梅花广泛应用于主轴伺服电机,膜片用在传动伺服电机。比如数控车和数控铣,数控铣的XY轴属于传动伺服电机,而且要经常用到正反转,采用膜片的就比梅花的好,数控车的主轴伺服电机,采用梅花的就行了,梅花比膜片的便宜,同样的大小,梅花的转数限制比膜片的小,梅花耐震,允许的轴向偏差比膜片的大,但偏差越大,中间的垫子磨损的越快,膜片的灵敏度高,精度高。
真空助力器工作原理
解除制动时,控制阀推杆弹簧15 使控制阀推杆和空气阀向右移动,真空阀离开膜片座上的阀座而开启。伺服气室的前后两腔相通,且均为真空状态。膜片座和膜片在膜片回位弹簧的作用下回位,制动主缸解除制动作用。
若真空助力器失效或真空管路无真空度时,控制阀推杆将通过空气阀直接推动膜片座和制动主缸推杆移动,使制动主缸产生制动压力,但作用在踏板上的力要增大。
基本结构
真空助力器不工作时,空气阀10 和控制阀推杆12 在控制阀推杆弹簧15 的作用下,离开橡胶反作用盘7,处于右端极限位置,并使真空阀9 离开膜片座8 上的阀座,即真空阀处于开启状态。
而真空阀又被阀门弹簧16 压紧在空气阀上,即空气阀处于关闭状态。此时伺服气室的前后两腔相互连通,并与大气隔绝。在发动机工作时,前后两腔内都能产生一定的真空度。
什么是EBA/EVA
EBA: Ethylene Butyl Acrylate Copolymer 乙烯-丙烯酸丁酯共聚物
EVA: Ethylen Vinyl Acetate Copolymer 乙烯-醋酸乙烯酯
步进电机与伺服电机的区别
区别1: 控制的方式不同
步进电机是通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角。 伺服电机是通过控制脉冲时间的长短控制转动角度的。
区别2:所需的工作设备和工作流程不同
步进电机所需的供电电源(所需电压由驱动器参数给出),一个脉冲发生器(现在多半是用板块),一个步进电机,一个驱动器(驱动器设定步距角角度,如设定步距角为 0.45°,这时,给一个脉冲,电机走 0.45°);
其工作流程为步进电机工作一般需要两个脉冲:信号脉冲和方向脉冲。
伺服电机所需的供电电源是一个开关(继电器开关或继电器板卡),一个伺服电机;其工作流程就是一个电源连接开关,再连接伺服电机。
区别3 : 低频特性不同
步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。
当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。
交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。
区别4 :矩频特性不同
步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在 300~600r/min。
交流伺服电机为恒力矩输出,即在其额定转速(一般为 2000 或 3000 r/min)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
区别5: 过载能力不同
步进电机一般不具有过载能力。
交流伺服电机具有较强的过载能力。 以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额转矩的 3倍,可用于克服惯性负载在启动瞬间的惯性力矩。
(步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转 矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象)
区别6: 速度响应性能不同
步进电机从静止加速到工作转速(一般为每分钟几百转)需要 200~400ms。 交流伺服系统的加速性能较好,以松下MSMA400W 交流伺服电机为例,从静止加速到其额定转速 3000 r/min。仅需几 ms,可用于要求快速启停的控制场合。
说白了,极对数多,转速慢,控制角度的,动力线引脚多的都是步进电机,而且功率往往比较低。
而精度高,速度快,可应用于速度,位置,力矩多场合控制的,动力线都是UVW三线,通常都是伺服电机。而且通常极对数不超过5级,功率从几十瓦到几十千瓦都有。
扩展资料:
步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
参考资料:百度百科-伺服电机
百度百科-步进电机
伺服电机如何选择联轴器?
伺服电机选择联轴器一般要考虑以下几个因素:
安装时的对中精度如何;每种联轴器对应的对中偏差调节能力都不一样,例如,螺旋切缝联轴器最擅长角度纠偏且综合纠偏能力强,十字滑块联轴器最擅长纠正平行偏差且不会产生附加弯矩,单膜片联轴器无法纠正平行偏差,双膜片联轴器和波纹管联轴器能够纠正各种偏差,但对中偏差的大小比较小等
伺服电机的负载状况。例如,转速,扭矩,扭转刚度要求等。不同的联轴器特点不一样,膜片联轴器和波纹管联轴器的扭转刚度大,转速也可以达到很高;螺旋切缝联轴器的扭转刚度略低,零背隙梅花型联轴器可吸收冲击和振动等
环境要求。有些应用对于使用环境有很高要求,如高温,真空环境等,这些都会对联轴器提出很多特殊要求
寿命和维护要求。这个主要与厂家的设计水平和加工工艺有关系,一分钱一分货。十字滑块联轴器和梅花联轴器在使用很长时间后,需要维护中间的弹性体,更换弹性体后,联轴器即可恢复原来的性能;波纹管联轴器、膜片联轴器以及螺旋切缝联轴器在对中偏差过大的情况下,长期使用造成的交变应力会使其直接断裂损坏。好的设计可使得产品的寿命极佳,对于注重减少售后维护成本的客户来说,选择高质量产品不仅可以提高设备的可靠性,而且对降低总成本和维护公司声誉非常重要。
个人认为,设计优良的螺旋切缝联轴器可适用于很多伺服应用,十字滑块联轴器也是一种绝佳的设计。
这儿有篇Ruland撰写的一篇技术文章《如何选择联轴器》,希望对您有帮助。