本文目录一览:
2021-06-28 Rstdio中DESeq2相关软件的安装
#首先升级R
install.packages("installr")
library(installr)
updateR()
library("BiocManager")
#Bioconductor version 3.12 (BiocManager 1.30.15), R 4.0.5 (2021-03-31) Bioconductor version '3.12' is out-of-date; the current release version '3.13' is available with R version '4.1'; see
#重新更新Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(version = "3.13")
#更新成功
library("BiocManager")
#通过BiocManager安装我们常用的R包
BiocManager::install("ggplot2")
BiocManager::install(c("ggplot2","ggtree","DESeq2"))
#一次安装多个包
BiocManager::install("DESeq2")
#错误: 无法载入程辑包‘GenomeInfoDb’
BiocManager::install("GenomeInfoDbData")
#测试软件DESeq2
library("DESeq2")
#开始,DESeq2包分析差异表达基因简单来说只有三步:构建dds矩阵,标准化,以及进行差异分析。
library(DESeq2) #加载包
library(apeglm)
#Error in library(apeglm) : 不存在叫‘apeglm’这个名字的程辑包
BiocManager::install("apeglm")
####测试
library(DESeq2) #加载包
library(apeglm)
安装成功。
以下为差异基因表达分析的相关脚本:
pvalue(pval): 统计学差异显著性检验指标。
qvalue(p-adjusted): 校正后的p值(qvalue=padj=FDR=Corrected p-Value=p-adjusted),是对p值进行了多重假设检验,能更好地控制假阳性率。
校正后的p值不同的几种表现形式,都是基于BH的方法进行多重假设检验得到的。校正后的p值不同的展现形式是因为不同的分析软件产生的。
链接:
E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/
E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_48 vs 0/
E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_48 vs 24/
致病疫霉
###############################################################################################
library(DESeq2) #加载包
library(apeglm)
data.pi_Sae24 = read.table("E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Sae24_count.csv",sep = ',',header = T,row.names = 1)
data.pi_Sly24 = read.table("E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Sly24_count.csv",sep = ',',header = T,row.names = 1)
data.pi_Sme24 = read.table("E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Sme24_count.csv",sep = ',',header = T,row.names = 1)
data.pi_Stu24 = read.table("E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Stu24_count2.csv",sep = ',',header = T,row.names = 1)
condition.pi_Sae24 - factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))
condition.pi_Sly24 - factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))
condition.pi_Sme24 - factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))
condition.pi_Stu24 - factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))
colData.pi_Sae24 = data.frame(row.names= colnames(data.pi_Sae24),condition.pi_Sae24)
colData.pi_Sly24 = data.frame(row.names= colnames(data.pi_Sly24),condition.pi_Sly24)
colData.pi_Sme24 = data.frame(row.names= colnames(data.pi_Sme24),condition.pi_Sme24)
colData.pi_Stu24 = data.frame(row.names= colnames(data.pi_Stu24),condition.pi_Stu24)
dds.pi_Sae24 - DESeqDataSetFromMatrix(data.pi_Sae24,colData.pi_Sae24,design = ~ condition.pi_Sae24)
dds.pi_Sly24 - DESeqDataSetFromMatrix(data.pi_Sly24,colData.pi_Sly24,design = ~ condition.pi_Sly24)
dds.pi_Sme24 - DESeqDataSetFromMatrix(data.pi_Sme24,colData.pi_Sme24,design = ~ condition.pi_Sme24)
dds.pi_Stu24 - DESeqDataSetFromMatrix(data.pi_Stu24,colData.pi_Stu24,design = ~ condition.pi_Stu24)
dds.pi_Sae24 -DESeq(dds.pi_Sae24)
resultsNames(dds.pi_Sae24)
dds.pi_Sly24 -DESeq(dds.pi_Sly24)
resultsNames(dds.pi_Sly24)
dds.pi_Sme24 -DESeq(dds.pi_Sme24)
resultsNames(dds.pi_Sme24)
dds.pi_Stu24 -DESeq(dds.pi_Stu24)
resultsNames(dds.pi_Stu24)
res.pi_Sae24.24.0 = results(dds.pi_Sae24,contrast=c("condition.pi_Sae24","24","0"))
res.pi_Sly24.24.0 = results(dds.pi_Sly24,contrast=c("condition.pi_Sly24","24","0"))
res.pi_Sme24.24.0 = results(dds.pi_Sme24,contrast=c("condition.pi_Sme24","24","0"))
res.pi_Stu24.24.0 = results(dds.pi_Stu24,contrast=c("condition.pi_Stu24","24","0"))
order.res.pi_Sae24.24.0 - res.pi_Sae24.24.0[order(res.pi_Sae24.24.0$pvalue),]
order.res.pi_Sly24.24.0 - res.pi_Sly24.24.0[order(res.pi_Sly24.24.0$pvalue),]
order.res.pi_Sme24.24.0 - res.pi_Sme24.24.0[order(res.pi_Sme24.24.0$pvalue),]
order.res.pi_Stu24.24.0 - res.pi_Stu24.24.0[order(res.pi_Stu24.24.0$pvalue),]
setwd("E:/SolPanTP/RawData/诺禾转录组测序(310)/05 数据分析/DESeq2/log2FC+p value/pi/pi_24 vs 0")
write.csv(order.res.pi_Sae24.24.0,file = "order.res.pi_Sae24.24.0.csv",quote = F)
write.csv(order.res.pi_Sly24.24.0,file = "order.res.pi_Sly24.24.0.csv",quote = F)
write.csv(order.res.pi_Sme24.24.0,file = "order.res.pi_Sme24.24.0.csv",quote = F)
write.csv(order.res.pi_Stu24.24.0,file = "order.res.pi_Stu24.24.0.csv",quote = F)
diffgene_pi_Sae24.24.0_deseq2 - subset(order.res.pi_Sae24.24.0,padj 0.01 abs(log2FoldChange) 2)
diffgene_pi_Sly24.24.0_deseq2 - subset(order.res.pi_Sly24.24.0,padj 0.01 abs(log2FoldChange) 2)
diffgene_pi_Sme24.24.0_deseq2 - subset(order.res.pi_Sme24.24.0,padj 0.01 abs(log2FoldChange) 2)
diffgene_pi_Stu24.24.0_deseq2 - subset(order.res.pi_Stu24.24.0,padj 0.01 abs(log2FoldChange) 2)
write.csv(diffgene_pi_Sae24.24.0_deseq2,file = "diffgene_pi_Sae24.24.0_deseq2.csv",quote = F)
write.csv(diffgene_pi_Sly24.24.0_deseq2,file = "diffgene_pi_Sly24.24.0_deseq2.csv",quote = F)
write.csv(diffgene_pi_Sme24.24.0_deseq2,file = "diffgene_pi_Sme24.24.0_deseq2.csv",quote = F)
write.csv(diffgene_pi_Stu24.24.0_deseq2,file = "diffgene_pi_Stu24.24.0_deseq2.csv",quote = F)
g28指令是什么呢?
G28是返回参考点指令。
自动返回参考点(G28)利用这项指令,可以使控轴自动分会参考点。
格式: G28X —,Y —; G28 Z —,,X— ; 或G28 Y— ,Z—;
其中X,Y,Z为中间点位置坐标,指令执行后,所有的受控轴都将快速定位i到中间点,然后再从中间点到参考点。
自动返回参考点 G28 指令。
格式: G28X _ Z_。
功能: G28指令刀具,先快速移动到指令值所指令的中间点位置,然后白动间参考点。
说明: X、Z在G90时是中间点的坐标值,作G91时,是中问点相对刀具当前点的移动距离。对各轴而言,移动到中问过波点或移劝到参考点均是以决速移动的速度来完成的(非直线移动),这种定位完全等效于G00定位。
数控编程指令
1、G04(延时或暂停指令)。
一般用于正反转切换、加工盲孔、阶梯孔、车削切槽。
2、G17、G18、G19 平面选择指令,指定平面加工,一般用于铣床和加工中心。
G17:X-Y平面,可省略,也可以是与X-Y平面相平行的平面。
G18:X-Z平面或与之平行的平面,数控车床中只有X-Z平面,不用专门指定。
G19:Y-Z平面或与之平行的平面。
人生一串 1-3季全集高清完整版视频免费在线观看,求百度网盘资源
人生一串 1-3季全集高清完整版视频免费在线观看:
链接:
?pwd=6bix 提取码: 6bix
简介:《人生一串》是由旗帜传媒制作,并与bilibili共同出品的烧烤类美食纪录片 。
《人生一串》包括:《人生一串第一季》《人生一串第二季》《人生一串第三季》。
该纪录片以展现全中国各地独具特色的烧烤文化为主题,涉及近30个城市的500多家烧烤摊 。
该片于2018年6月20日起每周三20:00在bilibili播出 。